Navigating HCC Treatment Decision: What Do We Learn From Systemic Treatment

Wu Chia-Che Hematology-Oncology, K-CGMH 2020/09/13

HCC Treatments In Past

HCC Treatments in BCLS Guideline in 2018

Curative Treatments for Localized HCC

	Resection	Ablation	Transplant
	 Noncirrhotics: 	• Effective when < 3 cm	 Cures both
	Choice of therapyCirrhotics: reserved	 Multiple modalities (thermal, chemical, 	 MELD exception: Milan criteria,
Key points	for CTP A; avoid R hepatectomy	stereotactic radiation)	downsizing
	 Best for solitary HCC 	 Minimally invasive 	
	< 30% eligible		
5-yr survival, %	70	40-50	> 70
5-yr recurrence, %	70	70	15

Liver Embolotherapy

Technique	Mechanism	Advantages	Disadvantages
TAE	Ischemic necrosis induced at arteriolar level via permanent embolic (eg, small particles)	Low cost, no chemotherapy adverse events	 Postembolization syndrome may cause PEs
Conventional TACE (cTACE)	Intrahepatic chemotherapy with embolization by ethiodized oil	Strongest evidence supporting benefit from RCT data	 Intraoperator technical variation (cTACE) Systemic release of chemotherapy (cTACE) Postembolization syndrome
DEB-TACE	Intrahepatic chemotherapy + embolization with slow- release drug-eluting beads	More standardized than cTACE, less systemic release of chemotherapy	 More expensive than cTACE Postembolization syndrome
Radioembolization	Radiation necrosis induced by beta-emitting yttrium-90 microspheres	 May improve TTP Fewer sessions required No postembolization syndrome May be safer in adv disease with PVT Radiation segmentectomy may be curative FLR hypertrophy from radiation lobectomy can provide tumor control and facilitate resection 	 Cost: 2-3x more expensive Requires multidisciplinary coordination Nontarget delivery may cause severe ulceration Potential biliary toxicity Radiation-induced liver disease

Pan-Asian Treatment Depending on BCLC staging

HCC Treatment First-line Systemic Therapy

Agent	FDA Indication	Key Trial
Sorafenib	Unresectable HCC	SHARP
Lenvatinib	First-line treatment of patients with unresectable HCC	REFLECT

SHARP

Sorafenib vs. Placebo in Advanced HCC

- Randomized, double-blind phase III trial
 - Sorafenib: multispecific TKI with activity against CRAF; BRAF; KIT; FLT-3; RET; RET/PTC; VEGFR-1, -2, -3; PDGFR-ß

- Primary endpoints: OS, time to symptomatic progression
- Secondary endpoints: TTP, disease control rate, safety

Survival and Progression

 Sorafenib treatment associated with improved OS in nearly all selected subgroups, including those with poorer performance status and macroscopic vascular invasion

SHARP

Select Treatment-Related AEs

	Sorafenib (n = 297)			Placebo (n = 302)		
AES, 70	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4
Constitutional symptoms						
 Fatigue 	46	9	1	45	12	2
 Weight loss 	30	2	0	10	1	0
Dermatology/skin						
 Rash/desquamation 	19	1	0	14	0	0
 HFSR 	21	8	0	3	< 1	0
 Alopecia 	14	0	0	2	0	0
Gastrointestinal						
 Diarrhea 	55	10	< 1	25	2	0
 Anorexia 	29	3	0	18	3	< 1
 Nausea/vomiting 	39	3	0	31	5	0
Hepatic dysfunction	11	2	1	8	2	1

REFLECT

Lenvatinib vs Sorafenib in unresectable HCC

Phase 3, global, randomized, open-label, noninferiority study

Patients with unresectable HCC Primary endpoint: (n=954) • OS Lenvatinib **Stratification** Secondary endpoint: • No prior systemic therapy for (n=478) • PFS • Region: unresectable HCC 8mg (BW < 60KG) or (Asia-pacific or • TTP • \geq 1 Measurable target lesion per 12 mg (BW \geq 60kg) Western) Randomization 1:1 mRECIST • ORR once daily • MVI and/or EHS: • BCLC stage B or C • Quality of life (yes or no) • PK lenvatinib exposure • Child-Pugh score A • ECOG PS: parameters • ECOG PS ≤ 1 (0 or 1) sorafenib Tumour assessments were • Adequate organ function • Body weight: (n=476) performed according to $(<60 \text{ kg or} \ge 60 \text{ kg})$ • Patients with \geq 50% liver mRECIST by the investigator 400mg twice daily occupation, clear bile duct invasion, or portal vein invasion at the main portal vein (Vp4) were excluded

Tumour assessments were performed every 8 weeks using CT or MRI, regardless of dose interruptions, and until radiologic disease progression

Kudo M et al. Lancet 2018;391:1163-1173.

REFLECT Overall Survival

REFLECTProgression-Free Survival

REFLECT Tumor Assessment

n, (%)	Lenvatinib (n = 478)	sorafenib (n = 476)	Odds Ratio (95% CI)
ORR	115 (24.1)	44 (9.2)	
95% CI	20.2-27.9	6.6-11.8	
CR	6 (1.3)	2 (0.4)	
PR	109 (22.8)	42 (8.8)	
SD	246 (51.5)	244 (51.3)	3.13
Durable SD	167 (34.9)	139 (29.2)	(2.15–4.56) P < 0.0001
PD	71 (14.9)	147 (30.9)	
Unknown/NE	46 (9.6)	41 (8.6)	
DCR n (%)	361 (75.5)	288 (60.5)	
95% CI	71.7-79.4	56.1-64.9	

REFLECT

Select Treatment-Emergent AEs

	Lenvatinik	Lenvatinib (n = 476)		(n = 475)
AE, 70	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Total	99	75	99	67
HFSR	27	3	52	11
Hypertension	42	23	30	14
Diarrhea	39	4	46	4
Decreased appetite	34	5	27	1
Decreased weight	31	8	22	3
Fatigue	30	4	25	4
Alopecia	3	0	25	0
Proteinuria	25	6	11	2
Dysphonia	24	< 1	12	2
Nausea	20	1	14	1

Hand-Foot Skin Reaction

- General principle is to treat the hyperkeratosis and skin inflammation
 - Creams or ointments containing urea, ammonium lactate, or salicylic acid
- Topical corticosteroids may help reduce grade 2 or higher inflammation
- In general, when grade 3 or intolerable, treatment should be withheld until symptoms resolve
 - May be restarted at a lower dose

HCC Treatment First-line Systemic Therapy

Agent	FDA Indication	Key Trial
Sorafenib	Unresectable HCC	SHARP
Lenvatinib	First-line treatment of patients with unresectable HCC	REFLECT

- Sorafenib improves survival vs placebo
- Lenvatinib noninferior to sorafenib for OS, but increases response rates and delays progression vs sorafenib
- Do **IO** have a role in first-line therapy?

CheckMate 459

Nivolumab vs. Sorafenib as 1st-line Therapy

International, open-label, randomized phase III trial (minimum follow-up: 22.8 mos)

- Primary endpoint: OS
 - Predefined threshold for statistical significance: HR of 0.84 (P = .0419)
- Secondary endpoints: PFS, ORR, association between PD-L1 expression and efficacy

CheckMate 459

Overall Survival and Progression-Free Survival

- The predefined threshold of statistical significance for OS with nivolumab was not met, although nivolumab demonstrated clinical benefit
- ORR: nivolumab, 15%; sorafenib, 7%

CheckMate 459 Subsequent Therapy

Treatment, n (%)	Nivolumab (n = 371)	Sorafenib (n = 372)
Any subsequent therapy	181 (49)	195 (53)
Systemic therapy	140 (38)	170 (46)
 Tyrosine kinase inhibitor 	132 (36)	86 (23)
 Chemotherapy 	15 (4)	25 (7)
 Investigational agent 	10 (3)	40 (11)
 Immuno-oncology agent 	7 (2)	76 (20)
 Other 	2 (1)	4 ()
Local therapy	63 (17)	61(16)
Radiotherapy	52 (14)	38 (10)
Surgery	10 (3)	14 (4)

CheckMate 459

Treatment-Related Adverse Effects

- Nivolumab demonstrated an improved safety profile compared with sorafenib, with fewer grade 3/4 TRAEs and TRAEs leading to discontinuation vs sorafenib
 - Grade 3/4 TRAEs: nivolumab, 22%; sorafenib, 49%

*Occurring in > 10% of patients in either treatment arm.

Atezolizumab + Bevacizumab in Untreated, Unresectable HCC Randomized Phase Ib Study

- Arm F primary endpoint: PFS
- Study includes first randomized analysis in HCC of ICI + VEGF inhibitor vs ICI alone

Atezolizumab + Bevacizumab - ORR in Arm A -

Decremente	Atez	olizumab + Bevacizumab (n	i = 104)
Response	IRF RECIST 1.1	IRF HCC mRECIST	INV RECIST 1.1
Confirmed ORR, n (%)	37 (36)	41 (39)	34 (33)
(95% CI)	(26-46)	(30-50)	(24-43)
CR	12 (12)	16 (15)	3 (3)
■ PR	25 (24)	25 (24)	31 (30)
SD	37 (36)	33 (32)	44 (42)
PD	25 (24)	25 (24)	20 (19)
DCR, n (%)	74 (71)	74 (71)	78 (75)
Ongoing response, n/N (%)	28/37 (76)	28/41 (68)	24/34 (71)
Median DOR, mo	NE	NE	NE
(95% CI)	(11.8 – NE)	(11.8 - NE)	(11.7 – NE)
DOR range, mo	1.6+ to 31.0+	1.6+ to 31.0+	3.5 to 31.0+
■ ≥ 9 mo, n (%)	20 (54)	25 (61)	21 (62)
■ ≥ 12 mo, n (%)	11 (30)	11 (27)	12 (35)

Atezolizumab + Bevacizumab - PFS in Arm F -

Median follow-up: 12.4 mos

Atezolizumab/Bevacizumab vs Sorafenib

Multicenter, randomized, open-label, phase III trial

Coprimary endpoints: OS and PFS

Overall Survival and Progression-Free Survival

Median follow-up: 8.6 mos.

Adverse Effects

 \geq 10% frequency in either arm and > 5% difference between arms.

Time to Deterioration in QoL

QoL Parameter	Atezo + Bev (n = 336)	Sorafenib (n = 165)
Mean baseline QoL score (SD)	71.04 (21.07)	68.79 (21.20)
Median TTD, mos (95% CI)	11.2 (6.0-NE)	3.6 (3.0-7.0)
 HR (95% CI) 	0.63	(0.46-0.85)
Clinically meaningful QoL deteri	oration, %*	
 Cycle 2 	29.9	44.2
 Cycle 3 	31.5	43.3
 Cycle 4 	30.2	41.4
• Cycle 5	29.6	35.7

Time to Deterioration in Physical Functioning

Physical Functioning Parameter	Atezo + Bev (n = 336)	Sorafenib (n = 165)
Mean baseline physical functioning score (SD)	85.73 (16.32)	84.82 (17.75)
Median TTD, mos (95% CI)	13.1 (9.7-NE)	4.9 (3.5-6.2)
 HR (95% CI) 	0.53 (0.3	9-0.73)
Clinically meaningful deterioration, %*		
 Cycle 2 	24.2	39.5
 Cycle 3 	21.3	37.0
 Cycle 4 	22.3	38.6
• Cycle 5	22.9	31.4

Time to Deterioration in Role Functioning

Role Functioning Parameter	Atezo + Bev (n = 336)	Sorafenib (n = 165)
Mean baseline role functioning score (SD)	85.01 (23.03)	85.75 (21.60)
Median TTD, mos (95% CI)	9.1 (6.5-NE)	3.6 (2.2-6.0)
 HR (95% CI) 	0.62 (0.4	6-0.84)
Clinically meaningful deterioration, % ³	*	
 Cycle 2 	29.3	41.1
 Cycle 3 	29.6	42.0
 Cycle 4 	27.1	37.5
 Cycle 5 	28.1	31.4

KEYNOTE-240

Phase 3 randomized study of pembrolizumab vs best supportive care (BSC) for 2L advanced hepatocellular carcinoma

KEYNOTE-240 Overall Survival

KEYNOTE-240 Progression-Free Survival

 Pembro
 Placebo

 HR (95% CI)
 0.775 (0.6 09-0.987)

3.0 mo

(2.8-4.1)

0.0186

2.8 mo

(2.5-4.1)

P value

Median

(95% CI)

Primary Analysis

HR (95% CI) р 100 90 Pembrolizumab 0.718 0.0022 Progression-Free Survival (%) (0.570 - 0.904)Placebo 80 70 19.4% 60 6.7% 50 Median (95% CI) 3.0 mo (95% CI, 2.8-4.1) 40 2.8 mo (95% CI, 1.6-3.0) 30 20 10 0 -0 4 8 12 16 20 24 28 32 Number at risk Time, months 278 38 24 11 3 0 114 64 0 7 3 0 135 46 16 1 1 0

Final Analysis

KEYNOTE-240 Overall Survival in East-Asia

KEYNOTE-240

Progression-Free Survival in East-Asia

KEYNOTE-524

Lenvatinib+Pembrolizumab in unresectable HCC

DLT Evaluation (Part 1)

- n=6
- Patients ineligible for other therapies
- Tolerability evaluated by DLTs during Cycle 1

Key Eligibility Criteria

- uHCC
- BCLC Stage B (not applicable for TACE) or C
- Child-Pugh class A

• ECOG performance status 0-1

Expansion (Part 2)

• No prior systemic therapy for

• n= ~94

uHCC

 At least 1 measurable target lesion according to mRECIST

Primary Endpoint

- Safety and tolerability
- ORR and DOR by mRECIST and RECIST 1.1 based on IIR (Part 2)

Selected Secondary and Exploratory End Points

- PFS
- TTP
- OS
- PK
- Antidrug antibodies for pembrolizumab

Tumour assessments were performed according to mRECIST by IR and IIR and RECIST v1.1 per IIR*

- 104 Patients were enrolled
 - DLT part: n = 6
 - Expansion part: n = 98
 - 4 Patients from the DLT part were excluded because of prior sorafenib treatment
- 37 (37%) Patients were still undergoing study treatment at the data cutoff date (October 31, 2019)
 - Both drugs: n = 34
 - Lenvatinib: n = 3

AFP, alpha fetoprotein; BCLC, Barcelona Clinic Liver Cancer; DLT, dose-limiting toxicity; ECOG, Eastern Cooperative Oncology Group; MPVI, macroscopic portal vein invasion.

Baseline Characteristic	N = 100
Median age, years (range)	66.5 (47, 86)
Sex, n (%) Male Female	81 (81) 19 (19)
ECOG performance status, n (%) 0 1	62 (62) 38 (38)
BCLC stage, n (%) B C	29 (29) 71 (71)
Serum AFP levelª, n (%) < 400 ng/mL ≥ 400 ng/mL	67 (67) 30 (30)
Child-Pugh Score, n (%) 5 6 7	71 (71) 27 (27) 2 (2) ^b
MPVI, extrahepatic spread or both, n (%)	62 (62)

^aData were missing for 3 patients.

^bThese 2 patients were enrolled in violation of the protocol.

NG #ASCO20 Slides are the property of the author permission required for reuse.

PRESENTED BY: Dr. Andrew X. Zhu

Safety

- Median duration of exposure
 - Overall treatment duration^a: 7.9 months
 - Range: 0.2 to 31.1
 - Lenvatinib: 7.6 months
 - Range: 0.2 to 31.1
 - Pembrolizumab: 7.4 months
 - Range: 0.03 to 23.5
- 95% Of patients had ≥ 1 TRAE
- 67% Of patients had grade \geq 3 TRAEs
 - Grade 3: 63%
 - Grade 4: 1%
 - Grade 5: 3%

Most Common TRAEs (≥ 25% of Patients With Any-Grade TRAE)

Preferred term.	N = 100			
n (%)	Any Grade	Grade 1	Grade 2	Grade 3
Hypertension	36 (36)	1 (1)	18 (18)	17 (17)
Diarrhea	35 (35)	19 (19)	11 (11)	5 (5)
Fatigue	30 (30)	12 (12)	14 (14)	4 (4)
Decreased appetite	28 (28)	12 (12)	16 (16)	0
Hypothyroidism	25 (25)	11 (11)	14 (14)	0

- Grade 5 TRAEs
 - Acute respiratory failure/acute respiratory distress syndrome (n = 1)
 - Abnormal hepatic function (n = 1)
 - Intestinal perforation (n = 1)
- Grade 4 TRAE
 - Leukopenia/neutropenia (n = 1)

^aThe duration between the earliest start date of the first dose of either medication and the latest date of last dose of either medication. TRAE, treatment-related adverse event.

Sildes are the property of the author permission required for reuse.

PRESENTED BY: Dr. Andrew X. Zhu

Percentage Change From Baseline in Sums of Diameters of Target Lesions (A) by mRECIST per IIR and

^aNumber of patients with both baseline and postbaseline sum of diameters of target lesions.

Kaplan-Meier Estimates of (A) PFS, by mRECIST and RECIST Version 1.1 per IIR; and (B) OS (Efficacy Analysis Set)

1L, first-line; CI, confidence interval; IIR, independent imaging review; (m)RECIST, (modified) Response Evaluation Criteria In Solid Tumors; NE, not estimable; OS, overall survival; PFS, progression-free survival.

2020AS PRESENTED AT:

#ASCO20 Slides are the property of the author ANNUAL MEETING ion required for reus

PRESENTED BY: Dr. Andrew X. Zhu

Efficacy Summary				
	N = 100			
Parameter	mRECIST per IIR	RECIST Version 1.1 per IIR	mRECIST per Investigator Review	
ORR (confirmed), n (%) (95% CI) ^a	46 (46) (36.0-56.3)	36 (36) (26.6-46.2)	41 (41) (31.3-51.3)	
Best overall response, n (%) Complete response Partial response Stable disease ^b Progressive disease Unknown/not evaluable Median DOR ^c , months (95% CI) ^d	11 (11) 35 (35) 42 (42) 7 (7) 5 (5) 8.6 (6.9-NE)	1 (1) 35 (35) 52 (52) 7 (7) 5 (5) 12.6 (6.9-NE)	5 (5) 36 (36) 45 (45) 7 (7) 7 (7) 12.6 (6.2-18.7)	
Median TTR, months (range)	1.9 (1.2, 5.5)	2.8 (1.2, 7.7)	2.7 (1.2, 11.8)	
DCR, n (%) (95% CI)ª	88 (88) (80.0-93.6)	88 (88) (80.0-93.6)	86 (86) (77.6-92.1)	

Conclusions

- Multikinase inhibition with lenvatinib plus PD-1 inhibition with pembrolizumab resulted in promising antitumor activity, as evidenced by a high ORR and DCR
 - ORR: 46% by mRECIST and 36% by RECIST v1.1
 - DCR: 88% by mRECIST and RECIST v1.1
- There were no new or unexpected toxicities resulting from lenvatinib plus pembrolizumab combination therapy
- An ongoing phase 3 trial (LEAP-002; NCT03713593) is assessing lenvatinib in combination with pembrolizumab, versus lenvatinib monotherapy, as a first-line therapy option for patients with uHCC

^aThe 95% CIs are calculated using exact method of binomial distribution (Clopper–Pearson method).

^bIncludes unconfirmed partial response, noncomplete response/nonprogressive disease, and durable stable disease. ^cThe Kaplan–Meier method was used for estimating DOR.

^dThe 95% CIs are based on a generalized Brookmeyer and Crowley method.

CI, confidence interval; DCR, disease control rate; DOR, duration of response; IIR, independent imaging review; (m)RECIST, (modified) Response Evaluation Criteria In Solid Tumors; NE, not estimable; ORR, objective response rate; PD-1, programmed death receptor-1; TTR, time to response; uHCC, unresectable hepatocellular carcinoma.

PRESENTED AT: 2020AS

ING #ASCO20 Sildes are the property of the author permission required for reuse.

PRESENTED BY: Dr. Andrew X. Zhu

6

LEAP-002

Lenvatinib/Pembrolizumab vs Lenvatinib

Multicenter, double-blind, phase III trial

*Body weight < 60 kg, 8 mg; body weight \geq 60 kg, 12 mg.

- Primary endpoints: PFS, OS
- Secondary endpoints: ORR, DoR, DCR, TTP, safety

Phase III Trials Assessing Immune Checkpoint Inhibitors for First-Line Systemic Therapy

Study	Agent(s)	Findings
Checkmate-459 ^[1]	Nivolumab vs sorafenib	Predefined threshold of statistical significance for OS with nivolumab not met
IMbrave150 ^[2,3]	Atezolizumab + bevacizumab vs sorafenib	Press release: increased OS, PFS with atezolizumab + bevacizumab Randomized phase Ib study: improved PFS with atezolizumab + bevacizumab vs atezolizumab
LEAP-002 ^[4]	Lenvatinib + pembrolizumab vs lenvatinib	Ongoing
HIMALAYA ^[5]	Durvalumab + tremelimumab vs sorafenib	Ongoing
COSMIC-312 ^[6]	Cabozantinib ± atezolizumab vs sorafenib	Ongoing
CheckMate 9DW ^[7]	Nivolumab + ipilimumab vs sorafenib or lenvatinib	Ongoing

1. Yau. ESMO 2019. Abstr LBA38_PR. 2. Lee. ESMO 2019. Abstract LBA39. 3. Finn. ASCO 2018. Abstr TPS4141. 4. Llovet. ASCO 2019. Abstr TPS4152. 5. Abou-Alfa. ASCO 2018. Abstr TPS4144. 6. Kelley. ASCO 2019. Abstr TPS4157. 7. NCT04039607.

Conclusion

- Sorafenib improves survival vs placebo
- Lenvatinib noninferior to sorafenib for OS, but increases response rates and delays progression vs sorafenib
- Single-agent immune checkpoint inhibitors have not met endpoints in phase III studies to date; however, combinations are showing promise