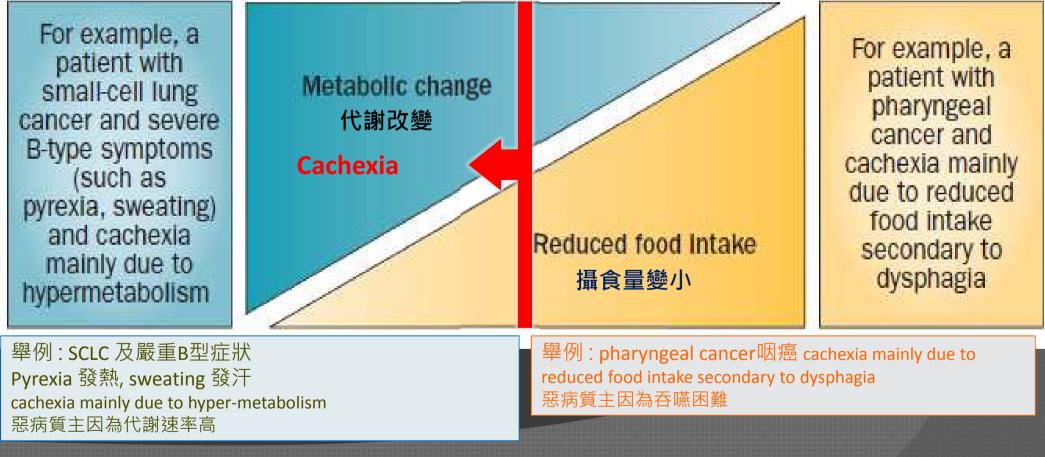
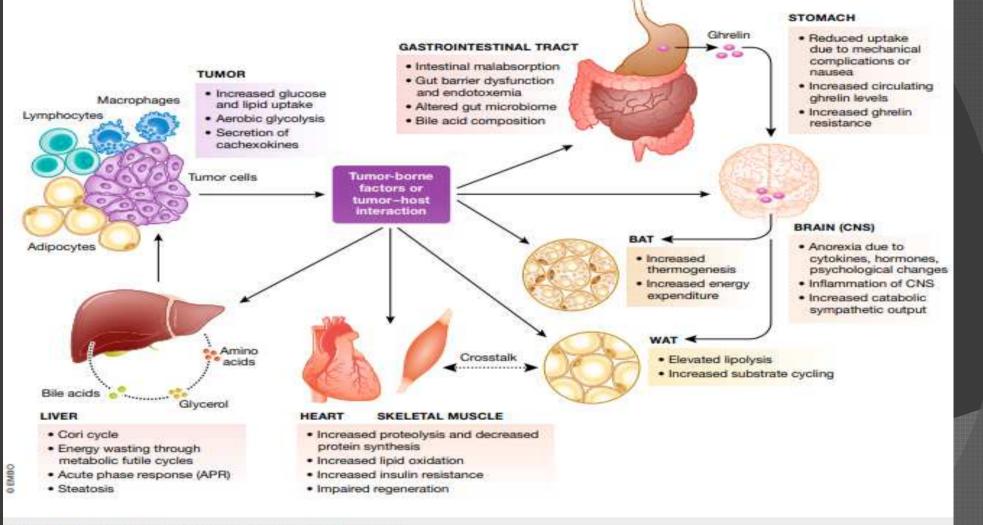
KEYS TO SLOW DOWN THE PROCESS OF CACHEXIA

Wen-Chi, Yang, MD, PhD Division of hematology and medical oncology Eda hospital


Cancer Anorexia-Cachexia Syndrome

4% weight lose: 2 year survival rate < 72% 3 year survival rate < 65%


Clin Geriatr Med 1997; 13:717-35 J Am Geriatr Soc 1995; 43:329-37

Dual Mechanisms of Cancer Cachexia

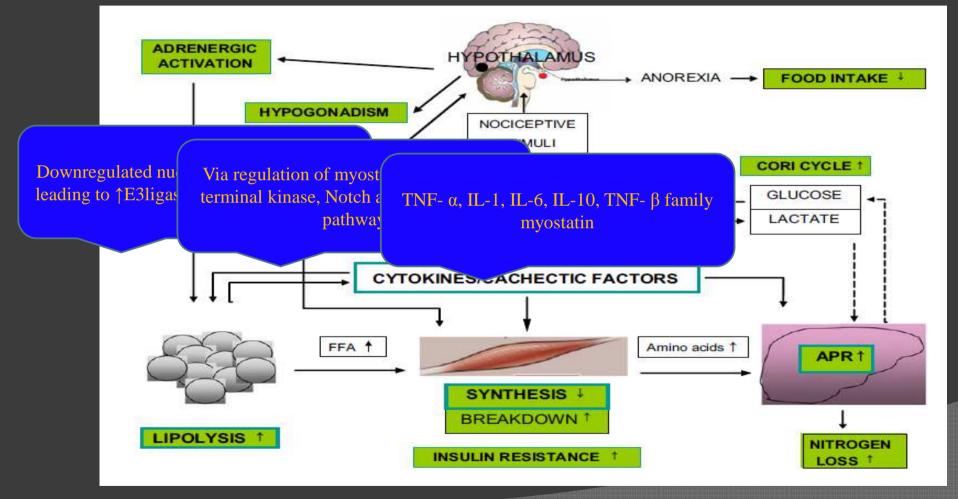
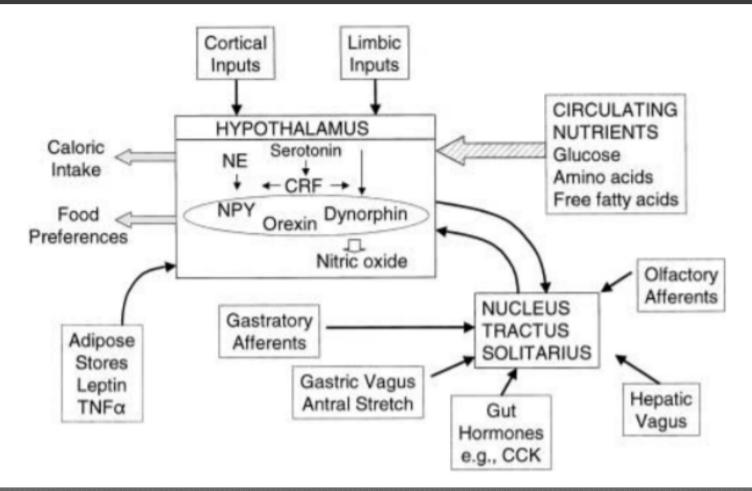
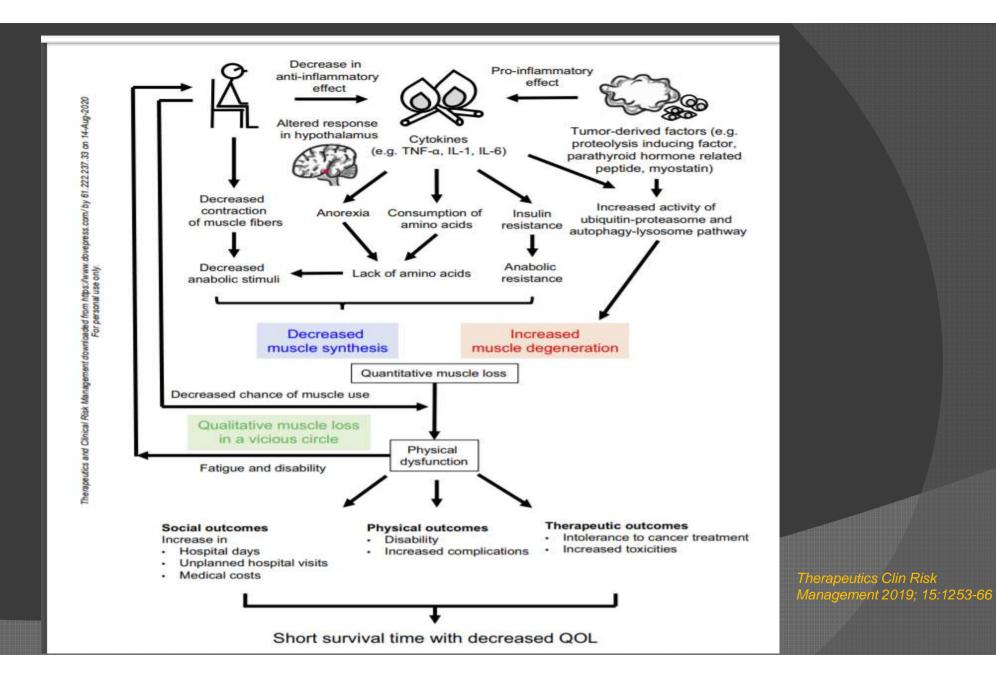

Energy metabolism in cachexia

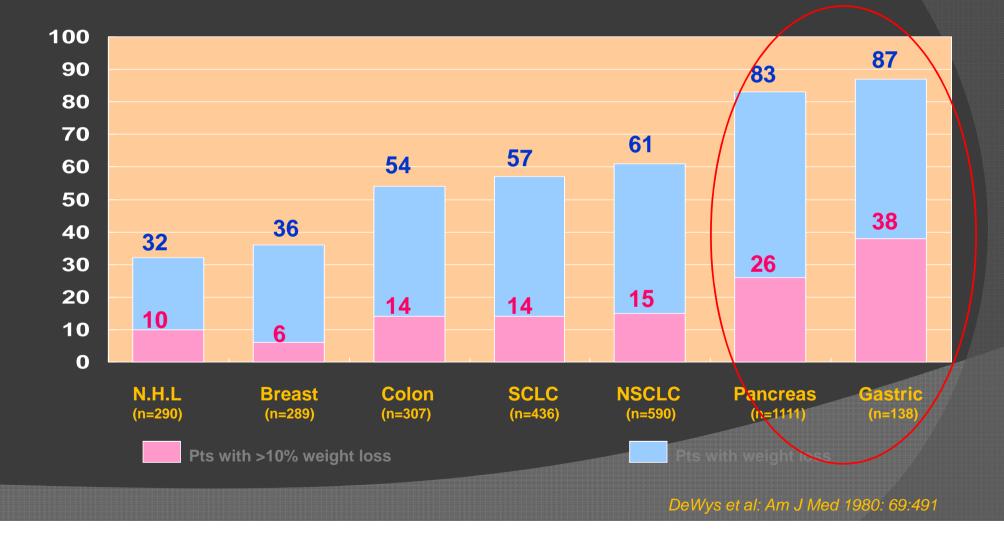
Figure 1. Overview of energy consuming processes in cachexia.

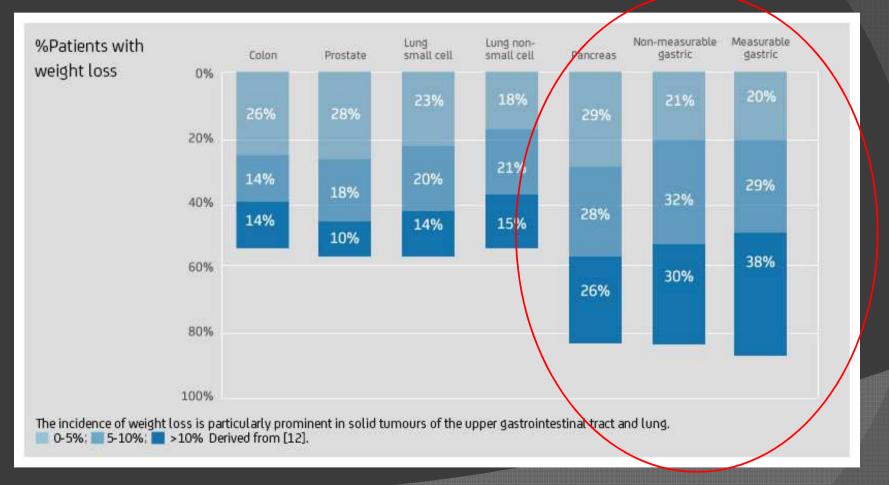

Tumor-secreted factors or tumor/host interactions reduce energy uptake and activate energy-wasting processes in different organ systems, acting A/B/04/B/04/2019/456/20(4):e47258. tissues, gastrointestinal system, liver, and muscles.

Cachexia Mechanism



Cell metabolism 2012; 16:153-166


Regulate food intake in CNS


Journals of Gerontology 2001a; 56A (Special Issue II):81–88

Incidence of Cancer Related Cachexia

Incidence of cancer related cachexia

Tan BHL, et al; Curr Opin Clin Nutr Metab Care 2008;11(4):400-7

Incidence of Cancer Cachexia in cancer patient

Cancer type	Cancer patients with cachexia ICD-9 code only	Cancer patients with any cachexia ICD-9 code	Cancer patients taking prescription medication indicative of cachexia	Cancer patients with ≥5% weight loss	Cancer patients with any one of the cachexia definitions
Breast, $n = 2112$	0.8%	3.1%	5.3%	18.6%	24.8%
Colorectal, $n = 905$	2.5%	6.1%	6.2%	16.4%	25.5%
Esophagus, $n = 117$	12.8%	20.5%	13.7%	16.2%	41.9%
Gastric, $n = 142$	8.4%	15.5%	19.0%	19.7%	41.5%
Head/neck, $n = 246$	6.1%	17.1%	6.1%	19.9%	37.0%
Liver, $n = 153$	3.3%	6.5%	3.9%	17.0%	24.2%
Lung, <i>n</i> = 1291	6.4%	9.7%	14.2%	15.2%	31.1%
Pancreas, $n = 221$	3.6%	7.2%	19.5%	12.7%	34.8%
Prostate, $n = 3354$	0.8%	3.2%	2.6%	11.0%	15.1%

Cancer type (N)

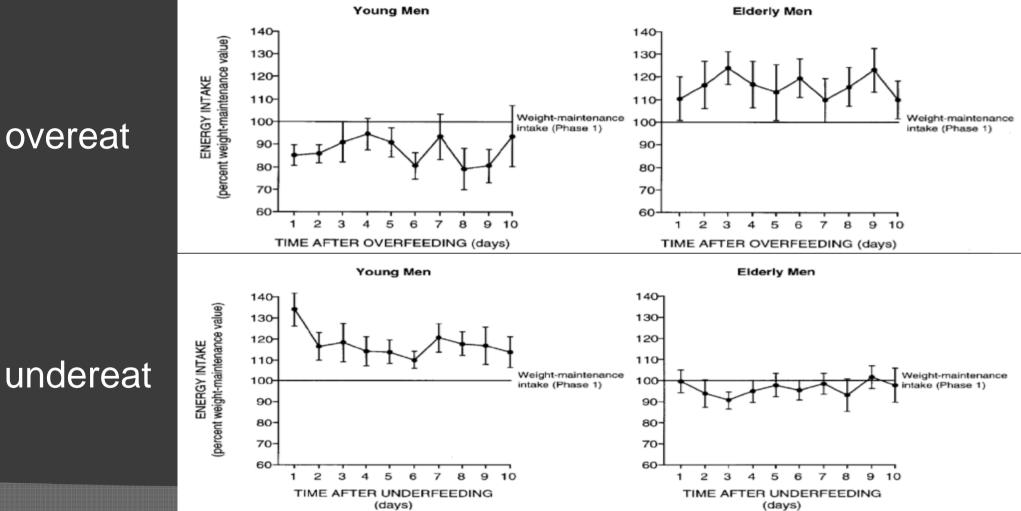
Cachexia

41.9%

41.5%

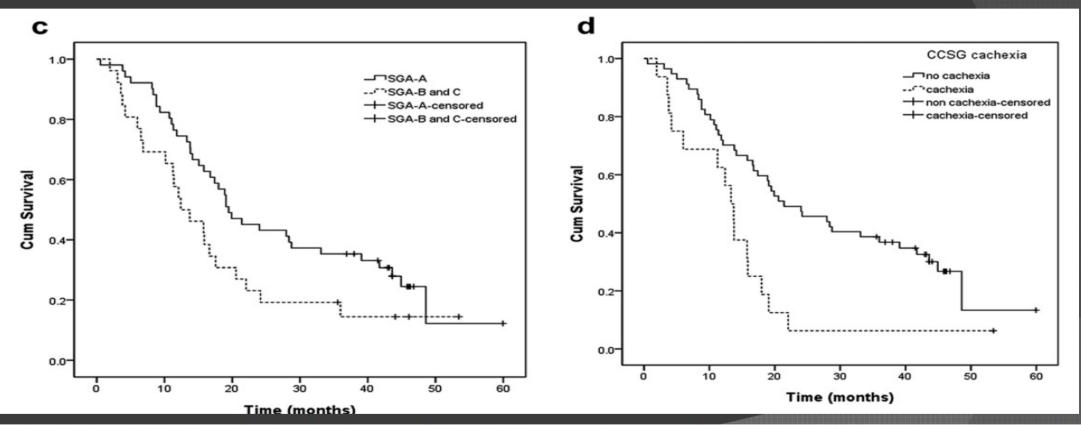
37.0%

34.8%


31.1%

Clin Pract Incponc0112 Irom Laviano A and

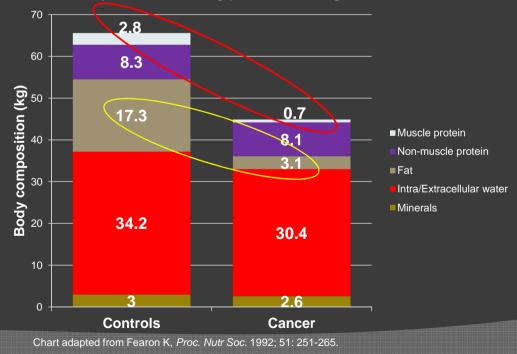
Table 1 Incidence of weight loss in cancers of different sites (adapted, with
permission, from ref 22).


Tumor site	Incidence of weight loss (%)	Esophageal ca (117)
Pancreas	83	Gastric ca (142)
Gastric	83	$H_{\rm ell}$ (246)
Esophagus	79	H&N ca (246)
Head and neck	72	Pancreatic ca (221)
Colorectal	55–60	Lung ca (1291)
Lung	50–66	J Oncol. 2009;2009:6934
Prostate	56	
Breast	10–35	<i>Laviano A et al. (2005). N.</i> <i>Oncol 2: 158–165 10.103</i>
General cancer population	63	Adapted, with permission
		Meguid MM (1996) Nut

Age matter

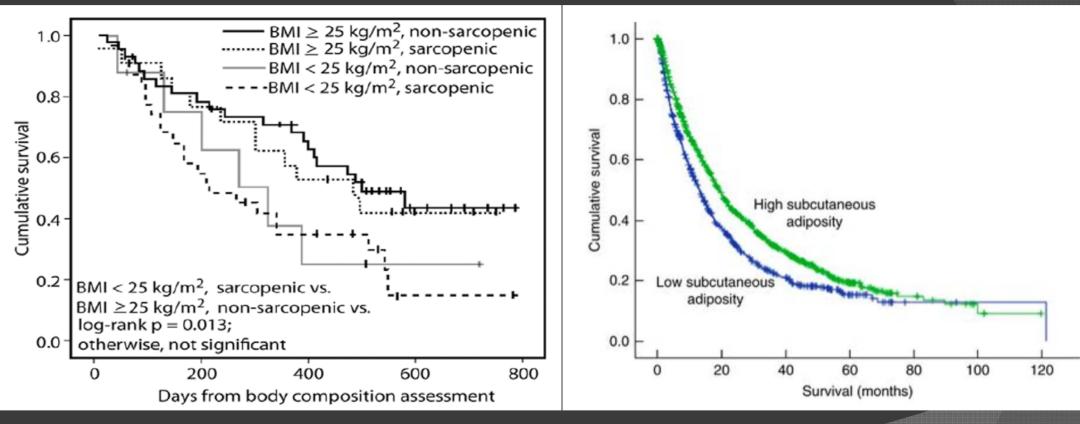
overeat

Nutritional status, cachexia and survival


2002). c. Overall survival of patients with colorectal carcinoma stage IV (N = 77) with respect to the presence (dotted line, N = 26) or absence (solid line, N = 51) of malnutrition (SGA). d. Overall survival of patients with colorectal carcinoma stage IV (N = 73) with respect to the presence (dotted line, N = 16) or absence (solid line, N = 57) of cachexia defined by the Cancer Cachexia Study Group. e. Overall survival of patients with colorectal carcinoma stage IV (N = 73) with respect to the presence (dotted line, N = 16) or absence (solid line, N = 57) of cachexia defined by the Cancer Cachexia Study Group. e. Overall survival of patients with colorectal carcinoma stage IV (N = 75) with respect to the presence (dotted line, N = 41) or absence (solid

Clin Nutr. 2012 Jun 11:1~8

Weight Loss is Associated With Skeletal Muscle Loss


Study Design

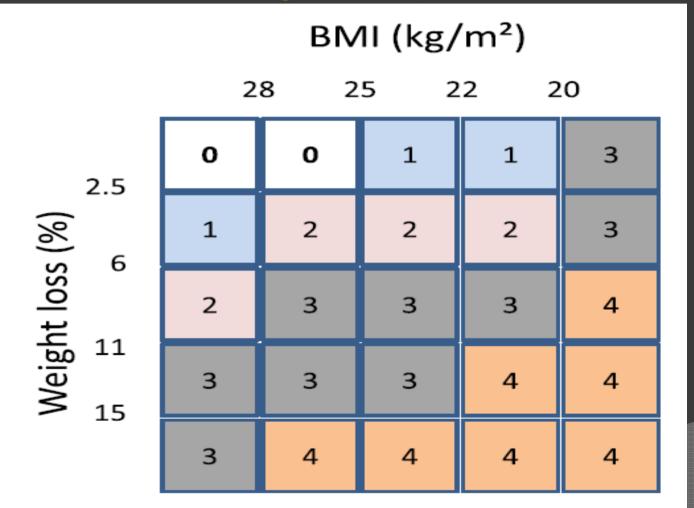
- Lung Cancer Patients, N=6
- Control subjects of matching pre-illness weight

Patients had lost 30% of pre-illness stable weight Skeletal muscle protein mass was 75% lower in cancer patients Body fat was 82% lower in cancer patients

Sarcopenia, lipolysis and survival

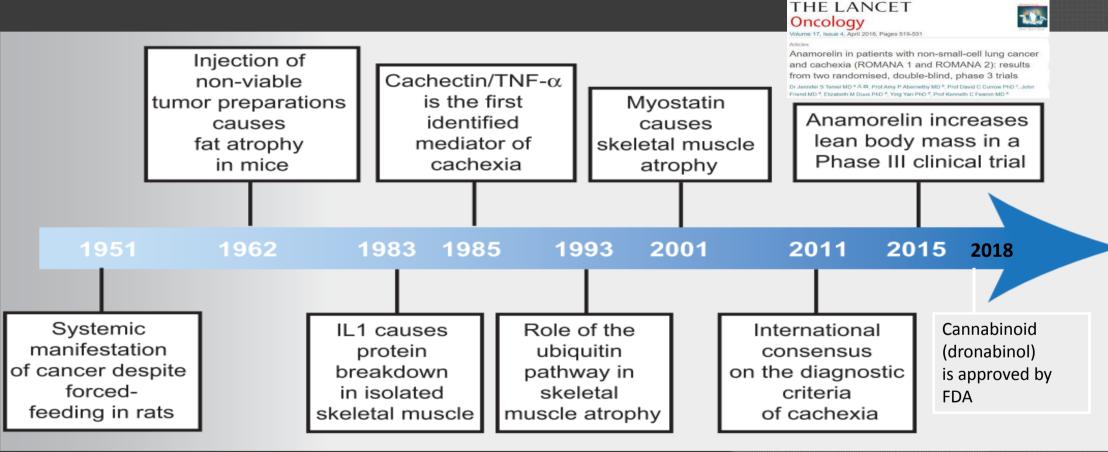
124 advanced cancer patients

1473 GI and resp cancer;273 metastatic RCC patients


PLoS ONE 2012; 7(1): e29330 British Journal of Cancer 2017;117:148–155

	No. of	No. of	Surviv	al (months)		Univariate			N	Model One: Conventional				Model Two: Body Composition					
Characteristic	Patients		Median	95% CI	Coefficient	SE	HR	95% CI	Р	Coefficient	SE	HR	95% CI	Р	Coefficient	SE	HR	95% CI	P
ECOG PS																			
0	299	164	26.1	20.5 to 31.7															
1	688	414	21.6	18.7 to 24.4	0.14	0.09	1.16	0.96 to 1.38	.119	0.33	0.09	1.39	1.16 to 1.68	<.001					
2	244	182	9.3	6.8 to 11.8	0.79	0.11	2.21	1.79 to 2.73	<.001	0.78	0.11	2.19	1.76 to 2.71	<.001					
3	222	190	4.5	2.8 to 6.2	1.29	0.11	3.64	2.94 to 4.49	<.001	1.23	0.11	3.41	2.75 to 4.23	<.001					
4	20	16	1.0	0.0 to 4.5	1.18	0.26	3.27	1.96 to 5.46	<.001	1.40	0.26	4.07	2.42 to 6.83	<.001					
BMI, kg/m ²																			
≥ 30.0	245	152	20.1	15.8 to 23.4															
25.0 to 29.9	511	313	18.8	15.6 to 22.1	-0.20	0.10	0.98	0.81 to 1.19	.844						-0.40	0.10	0.96	0.79 to 1.17	.691
20.0 to 24.9	536	366	15.2	13.1 to 17.3	0.19	0.10	1.21	1.00 to 1.45	.045						0.08	0.10	1.08	0.89 to 1.32	.425
< 20.0	181	135	11.5	8.8 to 14.1	0.45	0.12	1.56	1.25 to 1.99	< .001						0.32	0.13	1.38	1.07 to 1.78	.014
Weight loss, %																			
< 8	821	509	19.9	17.9 to 21.6															
≥8	652	457	12.7	11.0 to 14.4	0.31	0.06	1.36	1.20 to 1.54	<.001						0.22	0.07	1.25	1.10 to 1.43	.001
SMI																			
Nonsarcopenic	870	539	20.1	17.9 to 22.3															
Sarcopenic	603	427	13.0	11.1 to 14.8	0.29	0.06	1.34	1.18 to 1.52	<.001						0.18	0.07	1.20	1.04 to 1.37	.010
Muscle attenuation		81/V																	
Above threshold	686	400	19.9	17.0 to 22.7															
Below threshold	787	566	13.4	11.6 to 15.1	0.34	0.07	1.40	1.24 to 1.60	< .001						0.31	0.07	1.36	1.19 to 1.55	< .001
C statistic‡												0.73	3				0.9	2	
95% CI											0	.67 to	0.79			C	.88 to	0.95	

J Clin Oncol 2013; 31(12): 1539-47


Cachexia related to survival

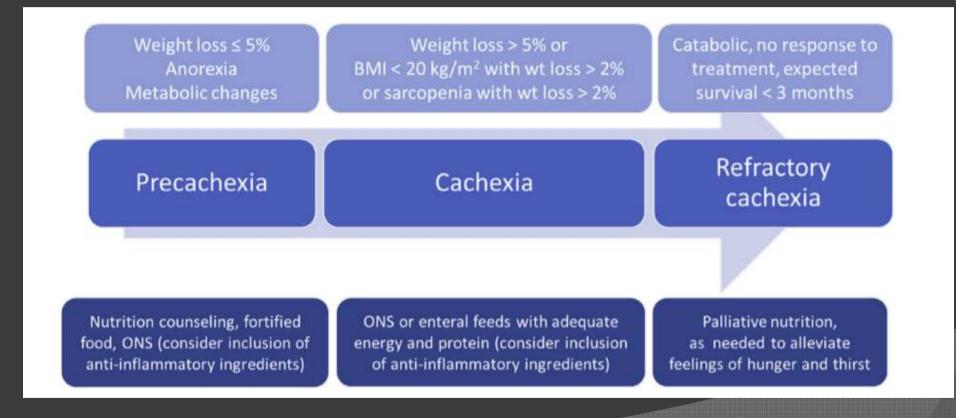
Grading schema to predict OS

Clin Nutrition 2017; 36:11-48

Milestones of Cancer Cachexia

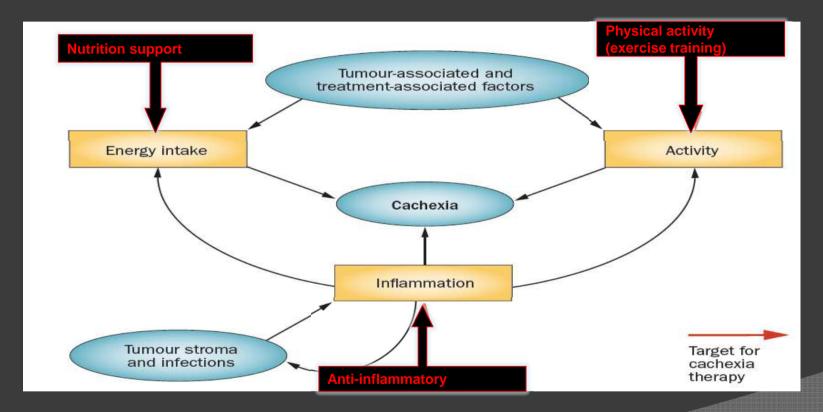
1.Petruzzelli M. and Wagner EF. GENES & DEVELOPMENT 30:489–501(2016) 2.Drug Des Devel Ther. 2017; 11: 2325–2331. 3. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018651s029lbl.pdf

Definition of Cancer Cachexia


--an international consensus

Panel: Diagnosis of Cancer Cachexia

- Weight loss >5% over past 6 months (in absence of simple starvation)
- BMI <20 and any degree of weight loss >2%
- Appendicular skeletal muscle index consistent with sarcopenia (males <7.26 kg/m²; females <5.45 kg/m²)* and any degree of weight loss >2%⁺


*Defined reference values (sex-specific) and standardised body composition measurements are essential to undertake assessment of skeletal muscle depletion. Although there is a paucity of reference values related to cancer-specific outcomes, a generally accepted rule is an absolute muscularity below the 5th percentile. This can be assessed as follows: mid upper-arm muscle area by anthropometry (men <32 cm², women <18 cm²);31 appendicular skeletal muscle index determined by dual energy x-ray absorptiometry (men <7 · 26 kg/m²; women <5 · 45 kg/m²); lumbar skeletal muscle index determined by CT imaging (men <55 cm²/m²; women <39 cm²/m²);33 whole body fat-free mass index without bone determined by bioelectrical impedance (men <14 · 6 kg/m²; women <11 · 4 kg/m²).3

When to interfere in cachexia status

Clin Nutrition 2017; 36:1187-96

Cachexia Treatment Choices

The combination of therapies promises a new era in supportive oncology, which could improve QOL and tolerance.

Nat Rev Clin Oncol. 2013 Feb;10(2):90-9.

Clinical Management of Cachexia

O Appetite stimulants

Corticosteroids Progesterone analogs (*Dual mechanism*) Cannabinoids Anamorelin hydrochloride

• Cytokine inhibitors

EPA (fish oil) Thalidomide Progesterone analogs MABp1

Increase lean body mass anamorelin enobosarm progesterone analogs

Anabolic Agents

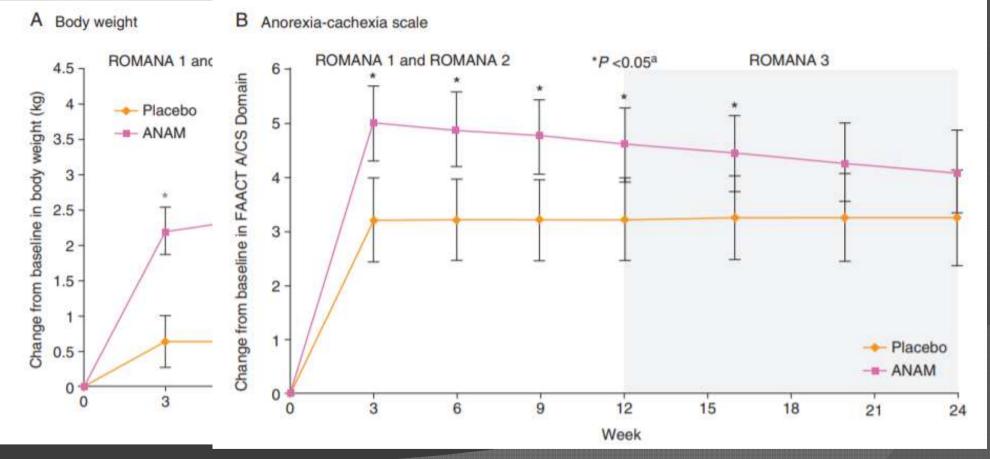
Androgens Growth hormones

Miscellaneous

Insulin Melatonin Mirtazapine Serotonin antagonists Metoclopramide Amino acid supplements Combination therapy **Majorly treat underlying illness...**

Steroid is only recommended for short lifeexpectancy patient

Management of Cancer Cachexia: ASCO Guideline


Eric J. Roeland, MD¹; Kari Bohlke, ScD²; Vickie E. Baracos, PhD³; Eduardo Bruera, MD⁴; Egidio del Fabbro, MD⁵;
 Suzanne Dixon, MPH, MS, RD⁶; Marie Fallon, MD⁷; Jørn Herrstedt, MD, DMSci⁸; Harold Lau, MD⁹; Mary Platek, PhD, MS, RD¹⁰;
 Hope S. Rugo, MD¹¹; Hester H. Schnipper, LICSW, BCD, OSW-C¹²; Thomas J. Smith, MD¹³; Winston Tan, MD¹⁴;
 and Charles L. Loprinzi, MD¹⁵

RECOMMENDATIONS Dietary counseling may be offered with the goals of providing patients and caregivers with advice for the management of cachexia. Enteral feeding tubes and parenteral nutrition should not be used routinely. In the absence of more robust evidence, no specific pharmacological intervention can be recommended as the standard of care; therefore, clinicians may choose not to prescribe medications specifically for the treatment of cancer cachexia. Nonetheless, when it is decided to trial a drug to improve appetite and/or improve weight gain, currently available pharmacologic interventions that may be used include progesterone analogs and short-term (weeks) corticosteroids.

NCCN guideline:life-expectancy: weeks to days, dexamethasone 4-8mg/d PO

Journal of Clinical Oncology 38, no. 21 (July 20, 2020) 2438-2453.

Anamorelin hydrochloride (ROMANA 1, 2 and 3 trials)

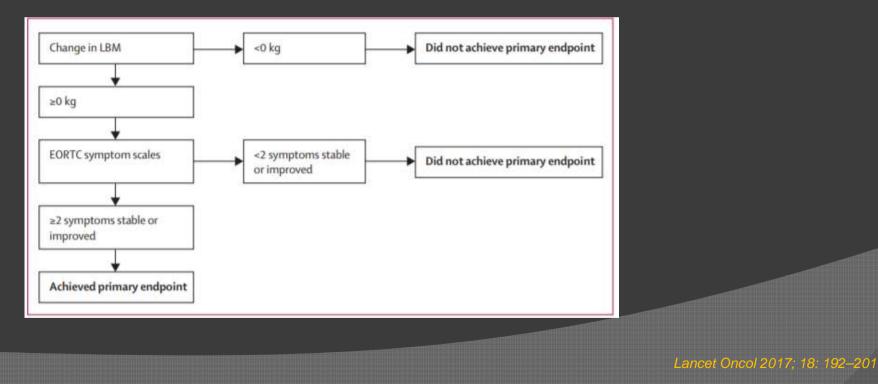
Ann Oncol 2017;28(8):1949-56

Anamorelin hydrochloride

Table 3. Summary of study drug-related TEAEs by system organ class and preferred term (safety population)							
System organ class	ROMANA 3						
Preferred term	Anamorelin 100 mg (n=343) n (%)	Placebo (n=167) n (%)					
Patients with any drug-related TEAEs	12 (3.5)	2 (1.2)					
Metabolism and nutrition disorders	5 (1.5)	0 (0.0)					
Diabetes mellitus	1 (0.3)	0 (0.0)					
Hyperglycemia	4 (1.2)	0 (0.0)					
Gastrointestinal disorders	5 (1.5)	1 (0.6)					
Dry mouth	0 (0.0)	1 (0.6)					
Dyspepsia	1 (0.3)	0 (0.0)					
Nausea	2 (0.6)	0 (0.0)					
Vomiting	2 (0.6)	0 (0.0)					
Skin and subcutaneous tissue disorders	3 (0.9)	0 (0.0)					
Dermatitis bullous	1 (0.3)	0 (0.0)					
Onychomadesis	1 (0.3)	0 (0.0)					
Urticaria	1 (0.3)	0 (0.0)					

System organ class	ROMANA 3					
Preferred term	Anamorelin 100 mg (n=343)	Placebo (n=167)				
	n (%)	n (%)				
General disorders and	1 (0.3)	1 (0.6)				
administration site conditions						
Fatigue	0 (0.0)	1 (0.6)				
Malaise	1 (0.3)	0 (0.0)				
Immune system disorders	1 (0.3)	0 (0.0)				
Allergic edema	1 (0.3)	0 (0.0)				
Investigations	1 (0.3)	0 (0.0)				
Increased γ-glutamyl transferase	1 (0.3)	0 (0.0)				
Nervous system disorders	1 (0.3)	0 (0.0)				
Headache	1 (0.3)	0 (0.0)				
Blood and lymphatic system disorders	0 (0.0)	1 (0.6)				
Thrombocytopenia	0 (0.0)	1 (0.6)				

Table 3. Summary of study drug-related TEAEs by system organ class and


TEAE, treatment–emergent adverse event (whether study drug-related to or not).

Ann Oncol 2017;28(8):1949-56

MABp 1

 \odot A human IgG1 monoclonal antibody specific to human interleukin-1 α

• A phase 3 clinical trial in advanced colorectal cancer

MABp1 clinical outcomes

Achieved primary endpoint (%)	
16 (20%)	14%
3 (14%)	16%
3 (7%)	23%
16 (27%)	7%
10 (18%)	11%
6 (16%)	19%
16 (18%)	14%
3 (27%)	11%
	6 (16%) 16 (18%)

Placebo group Difference **Relative risk** MABp1 group p value (effect size) (n=102) (n=207)(95% CI) 6% Lean body mass 105 (51%) 46 (45%) 0.18 1.11 (0.89-1.39) 1.01 (0.82-1.25) Pain 93 (45%) 45 (44%) 1% 0.45 46 (45%) 1.0 (0.81-1.25) Fatique 94 (45%) 0.48 0 7% 114 (55%) 49 (48%) 1.16 (0.91-1.47) Anorexia 0.12

Table 3: Post-hoc analysis of patients who achieved the primary endpoint, by individual endpoint components

	MABp1 group (n=207)	Placebo group (n=102)	p value
Interleukin 6 concentration (pg/mL)*	1.6 (1.9)	9.9 (2.7)	0.012
Platelet count (×10 ⁹ /L)	14 (5)	40 (8)	0.0052
Global quality of life score	-2.36 (1.58)	-4.03 (2.27)	0.55
Physical function score	-5.11 (1.53)	-3.38 (2.19)	0.52
Role function score	-6.83 (2.12)	-7.83 (3.02)	0.79
Emotional function score	2.50 (1.64)	1.37 (2.34)	0.69
Social function score	-0.89 (2.14)	0.00 (3.06)	0.81

Data are mean (SD) *Four outlier values were removed from this analysis.

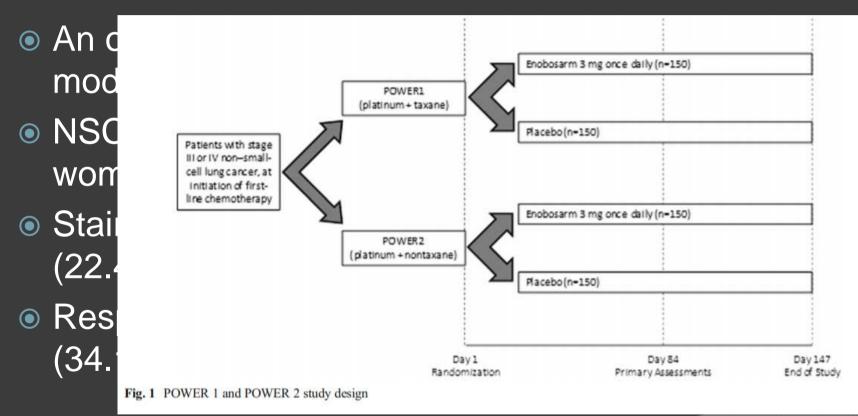
Table 4: Changes in pharmacodynamic outcomes from baseline from baseline to 8 weeks of treatment

The sensitivity analysis showed a positive effect for MABp1 treatment in all cate numbers, not all differences were significant. ECOG=Eastern Cooperative Oncole Commonwealth of independent states, including Georgia and Russia.

Table 2: Stratified sensitivity analysis for patients who achieved the pr

Lancet Oncol 2017; 18: 192–201

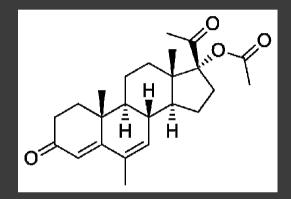
MABp1 adverse effects

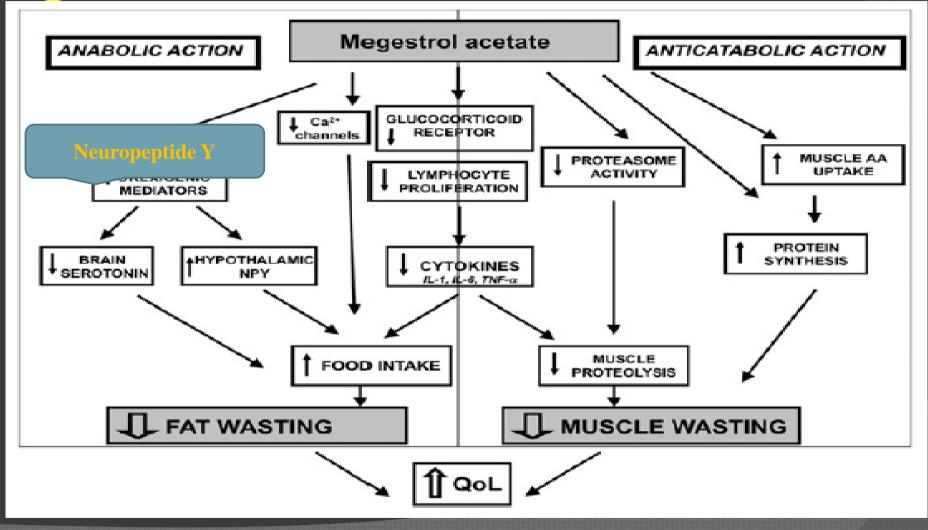

	MABp1 gro	oup (n=207)	Placebo group (n=102		
	Grade 1-2	Grade 3	Grade 1-2	Grade 3	
Abdominal pain	31 (15%)	5 (2%)	10 (10%)	2 (2%)	
Fatigue	21 (10%)	6 (3%)	6 (6%)	7 (7%)	
Oedema, peripheral	24 (12%)	4 (2%)	5 (5%)	2 (2%)	
Anaemia	13 (6%)	8 (4%)	2 (2%)	5 (5%)	
Weight decreased	21 (10%)	0	8 (8%)	0	
Constipation	21 (10%)	0	6 (6%)	0	
Asthenia	17 (8 %)	2 (1%)	7 (7%)	3 (3%)	
Nausea	18 (9%)	0	11 (11%)	1(1%)	

No patients had grade 4 events, and no patients died due to treatment.

Table 6: Treatment-emergent adverse events occurring in at least 10% of patients during the 8-week treatment period

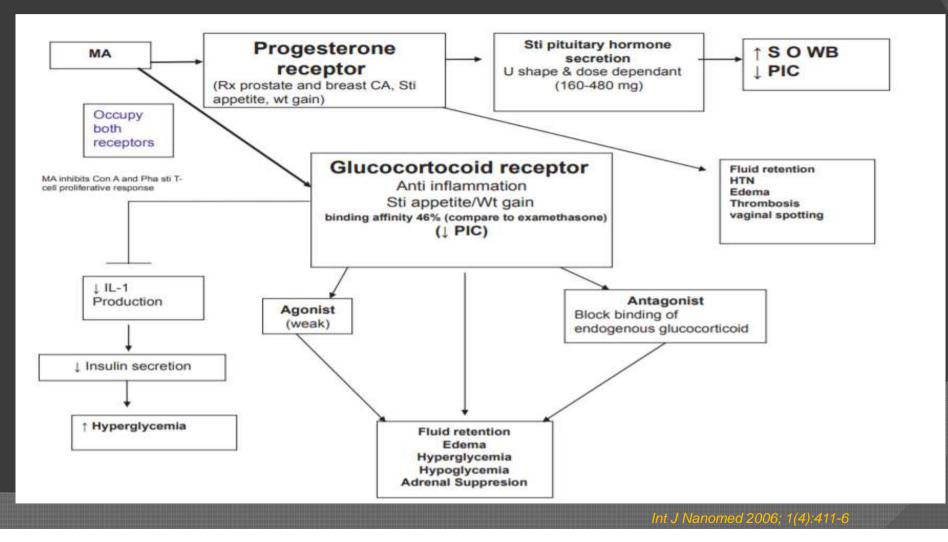
Lancet Oncol 2017; 18: 192–201


Enobosarm (POWER 1 and 2)


Curr Oncol Rep (2016) 18: 37

Megestrol acetate發展歷程

- Megestrol acetate (MA) is a synthetic progestin
 - **1963** Synthesized in England
 - 1964 Contraceptive
 - **1967** Breast cancer and Endometrial cancer.
 - **1993** Orexigenic (開胃) effect
 - MA was approved by FDA
 - Indication: anorexia, cachexia, or weight loss due to unknown cause in AIDS patients.
 - **Now** Majority of European countries have approved the indication of **ACS in AIDS and cancer patients**



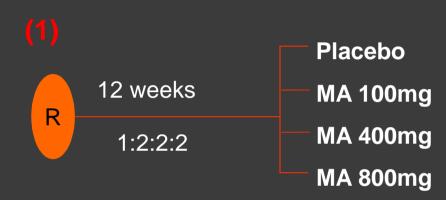
Megestrol Acetate

Clinical Nutrition 2013:1-6

Megestrol acetate (MA) mechanism

Pharmacokinetics

Time to peak concentration: 3~5 hours (oral suspension)

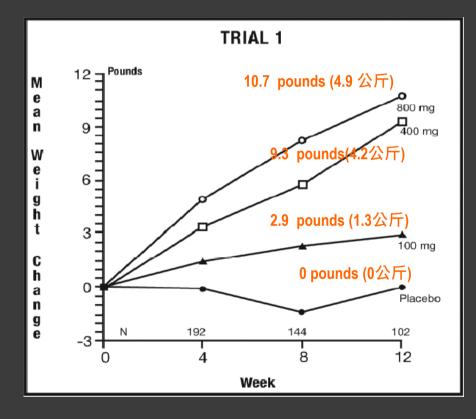

Metabolism site: LIVER, only 5%~8% of the dose of megestrol acetate results in metabolites.

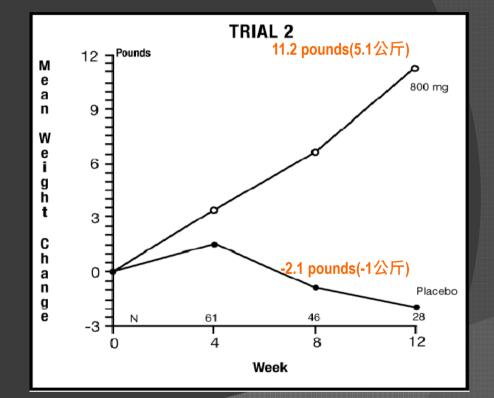
- Eliminated in the URINE, t1/2=13~105 hours
 - Bioavailability: NA

	Mean Cmax (ng/ml)	AUC (ng x hr/mL)	Median Tmax (hours)
10 cachectic males with acquired immunodeficiency syndrome received single oral doses of 800 mg/day for 21 days.	753 (+/- 529)	10476 (+/- 7788)	5
24 adults, HIV seropositive male subjects received 750 mg/day for 14 days.	490 (+/- 238)	6779 (+/- 3048)	3

From: Prod Info Megace® Oral Suspension,2001

Study for Optimal Dosage

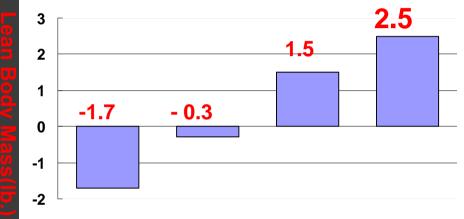

- Randomized, double-blind, placebo-control trial
- Endpoints :
 - Primary : weight gain
 - Secondary : the changes in weight and body composition, caloric intake, sense of well-being, toxic effects and appetite.


Annuals of Internal Medicine 1994; Volume 121, Number 6 Oncology 1994 ; 51 (suppl I):19-24

Change in Appetite

Treatment group	Patients with improved appetite at time of maximum weight change, %
Four-arm trial	
Placebo	50
Megace 100 mg	70.5
400 mg	71.7
800 mg	92.5**
Two-arm trial	
Placebo	48.3
Megace 800 mg	69.5*
Oncology 1994 ; 51 (suppl I):19-24	

Weight Gain-1



Prod Info Megace® Oral Suspension 2007 PDR@ Oncology 1994 ; 51 (suppl I):19-24

Mean Change in Body Composition

Megestrol Acetate (mg)

Megestrol increase body weight

Comparison: MA vs. placebo Outcome: weight gain

Study or sub-category	MA n/N	Placebo n/	'N	R	R (rando	m) 95%	CI		Weight %	RR (random) 95% CI
Feilu 1992	21/76	5/74				-	-	-	8.48	4.09 [1.63, 10.27]
Fietkau 1997	14/31	6/30			5	-			10.02	2.26 [1.00, 5.10]
Lai 1994	6/20	3/19		÷.		-	100		5.43	1.90 [0.55, 6.54]
Loprinzi 1990	32/67	26/66			-	_			19.98	1.21 [0.82, 1.79]
McMillan 1994	4/20	6/18	8 .	-	-	-			6.59	0.60 [0.20, 1.79]
Rowland 1996	26/122	8/121			-	đ.			11.08	3.22 [1.52, 6.83]
Schmoll 1992	17/63	4/28		cie.		-			7,60	1.89 [0.70, 5.10]
Tchekmedyian 1992	21/49	12/40		3	-				14.87	1.43 [0.81, 2.53]
Vadell 1998	38/99	13/51				<u></u>			15.94	1.51 [0.89, 2.56]
Total (95% CI)	547	447							100.00	1.71 [1.24, 2.36]
Total events: 179 (MA), Test for heterogenity: x ² Test for overall effect: Z	$^2 = 13.94$, df	= 8 (p = 0.08), <mark> </mark> ² 42.6%			-	æ	122		
		0.1	0.2	0.5	1	2	5	10		
			Favour	s placebo	Fav	ours trea	atment			

POLSKIE ARCHIWUM MEDYCYNY WEWNĘTRZNEJ 2008; 118 (11)

Megestrol improved appetite

Comparison: MA vs. placebo Outcome: Appetite improvement

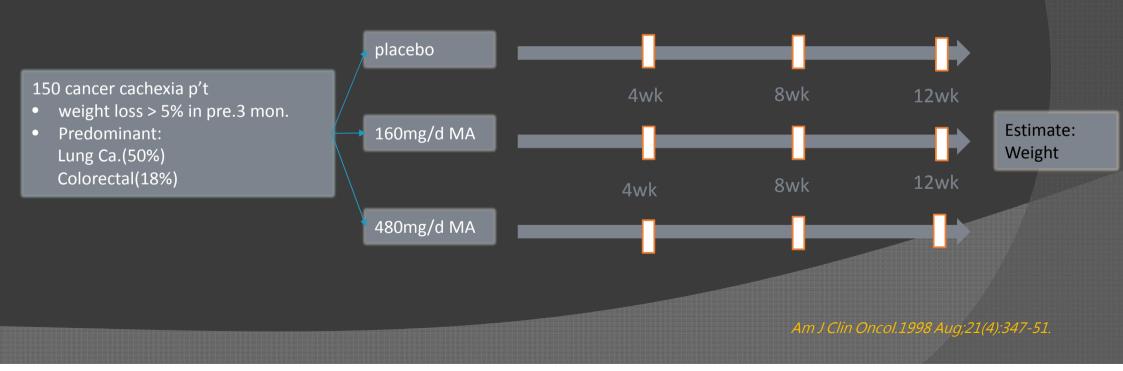
Study or sub-category	MA [n/N]	Placebo	[n/N]		RR (ra	andor	m) [95% Cl]		Weight [%]	RR (random) [95% Cl
Erkurt 2000	47/58	6/57						89-	■► 15.94	7.70 [3.58, 16.58]
Feliu 1992	38/76	10/74					9 <u>6</u>		18.61	3.70 [1.99, 6.87]
Lai 1994	11/20	4/19					-		12.98	2.61 [1.00, 6.80]
Loprinzi 1990	24/68	16/67					_		20.20	1.48 [0.87, 2.52]
McMillan 1994	4/20	6/18				22.8			6.59	0.60 [0.20, 1.79]
Schmoll 1992	37/63	6/28							16.43	2.74 [1.31, 5.74]
Zecca 1995	13/16	5/17						-07	15.84	2.76 [1.28, 5.99]
Total (95% CI)	301	262					<		100.00	3.00 [1.86, 4.84]
Total events: 170 (MA), Test for heterogenity: x ² Test for overall effect: Z	$^{2} = 13.46$, df =		02), I² (62.9%	7				.2	
			0.1	0.2	0.5	1	2	5	10	
				Favour	s placebo		Favours tre	eatment		

POLSKIE ARCHIWUM MEDYCYNY WEWNĘTRZNEJ 2008; 118 (11)

Safety

	Experiences, n								
	placebo	megestrol acetate, mg							
Adverse experience		100	400	800					
	(n=86)	(n=82)	(n=75)	(n=127)					
Deep-vein thrombosis	0	0	1(1.2)	0					
Edema	7(8.2)	4(4.9)	9(12.0)	2(1.5)					
Impotence	1(1.2)	3(3.7)	4(5.3)	11(8.7)					
Rash	4(4.7)	6(7.3)	3(4.0)	9(7.1)					

Values in parentheses are percentages

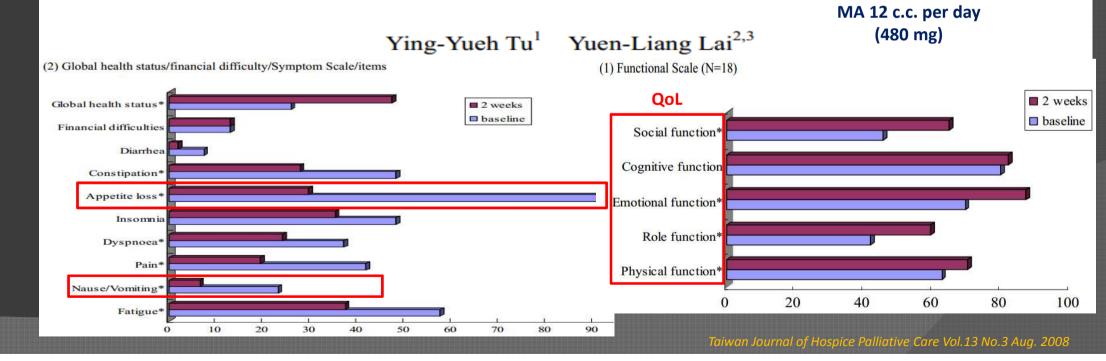

Oncology 1994 ; 51 (suppl l):19-24

Enough dose, Enough duration


[Articles]

Anticachectic Efficacy of Megestrol Acetate at Different Doses and Versus Placebo in Patients With Neoplastic Cachexia

Vadell, Catalina M.D.; Segui, Miguel Angel M.D.; Gimenez-Arnau, Jose Maria M.D.; Morales, Serafin M.D.; Cirera, Luis M.D.; Bestit, Isabel M.D.; Batiste, Eduardo M.D.; Blanco, Remei M.D.; Jolis, Laura M.D.; Boleda, Montserrat M.D.; Anton, Isabel M.D.


Enough dose, Enough duration

Taiwanese local trial

[Original Articles]

The Effect of Megestrol Acetate Oral Suspension on Appetite and Quality of Life in late-stage Cancer Patients

Publication	N	Study Population Cancer Types (Cachectic Status ^a)	Concurrent Cancer Treatment	Trial Arms (Intervention Period)	Major Outcomes I. Positive 2. Negative	Major Toxicity
Jatoi et al, J Clin Oncol. 2004 ⁶⁷	421	Mixed advanced cancer (Cachexia)	Not specified or combined	EPA vs MA vs MA + EPA (4 weeks)	In the MA containing regimens as compared with EPA I. BW, Appetite 2. QOL, OS	Not specified
Mantovani et al, Oncologist. 2010 ⁶⁴	332	Mixed advanced cancer (Cachexia)	Not specified or combined	Progestational agent vs EPA vs L-Carnitine vs Thalidomide vs Combination of all agents (4 months)	In the combination arm as compared with other 4 arms I. LBM, PS, GPS, REE, Fatigue, Appetite, Physical activity 2. QOL	Not specified
Wen et al, Chemotherapy. 2012 ⁶⁵	102	Mixed advanced cancer (Cachexia)	Not specified or combined	MA vs MA + Thalidomide (8 weeks)	In the combination arm as compared with MA I. BW, HGS, PS, QOL, GPS, Fatigue 2. None	Not specified
Macciò et al, Gynecol Oncol. 2012 ⁶⁶	104	Advanced gynecological tumor (Cachexia)	Not specified or combined	MA vs MA + L-carnitine, celecoxib, and antioxidants (4 months)	In the combination arm as compared with MA I. LBM, QOL, REE, Fatigue 2. PS, GPS, Appetite	Not specified
Madeddu et al, Clin Nutr. 2012 ⁶⁸	60	Mixed advanced cancer (Cachexia)	Not specified or combined	Arm I (L-carnitine + celecoxib) vs Arm 2 (L-carnitine + celecoxib + MA) (4 months)	In the arm 2 as compared with arm I I. None 2. LBM, BW, HGS, 6MWD, QOL, REE, Appetite, Fatigue	Not specified
Kouchaki et al, Support Care Cancer. 2018 ⁶⁹	90	Mixed gastrointestinal cancer (Cachexia)	Majority in chemotherapy	Arm I (MA + placebo) vs Arm 2 (MA + celecoxib) (2 months)	In the arm 2 as compared with arm I I. None 2. BW, QOL, HGS, Appetite, PS, GPS	Not specified

Notes: "Cachectic status was classified into precachecia, cachexia, refractory cachexia, or high risk for cachexia according to the consensus report."

Abbreviations: EPA, eicosapentaenoic acid; MA, megestrol acetate; BW, body weight; QOL, quality of life; OS, overall survival; LBM, lean body mass; PS, performance status; GPS, Glasgow Prognostic Score; REE, resting energy expenditure; HGS, hand-grip strength; 6MWD, 6-min walk distance. expenditure; HGS, hand-grip strength; 6MWD, 6-min walk distance.

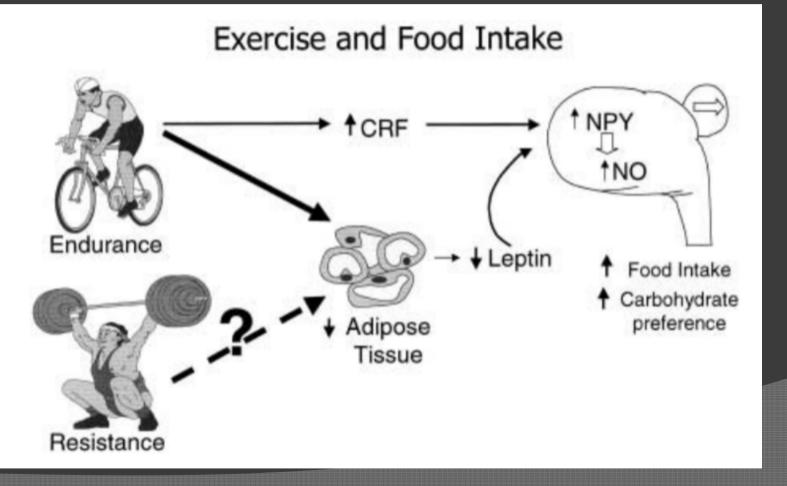
Compare with 5 different treatments

2		Arm 3 L-car		Arm 5 MA+EPA					
Parameter	Baseline	After treatment	p"	Baseline	After treatment	pa	Baseline	After treatment	p ^a
Primary endpoint									
LBM (kg)									
BIA (n = 332)	43.3 ± 8.6	44.6 ± 8.7	.952	43.5 ± 8.3	44.1 ± 8.7	.846	42.8 ± 8.1	44 ± 7.2	.609
DEXA $(n = 144)$	44.8 ± 9.8	45.2 ± 16.7	.980	45.3 ± 9.8	45.1 ± 9.3	.897	43.8 ± 9.4	44.9 ± 7.7	.0148
L3 CT $(n = 25)$									
Muscle mass (mm ²)	10,031 ± 3,833	10,477 ± 3,917	.148	$11,419 \pm 3,802$	$11,831 \pm 3,074$.196	$10,912 \pm 3,304$	11,504 ± 3,221	.084
Estimated LBM ^b (kg)	42.27 ± 29.5	43.5 ± 29.4	.058	42.4 ± 2.26	42.5 ± 9.1	.983	42.8 ± 8.1	45.4 ± 23.9	.001
REE (kcal/day)	$1,286 \pm 251$	$1,193 \pm 324$.375	$1,296 \pm 445$	$1,169.9 \pm 283$.486	$1,227 \pm 439$	$1,067.1 \pm 181$.044
Fatigue (MFSI-SF score)	26.4 ± 23	26.1 ± 25	.801	24.2 ± 19.2	27.8 ± 24.6	.634	26.9 ± 16.8	20 ± 23.1	.047
Secondary endpoint									
Grip strength (kg)	25.9 ± 12.1	25.1 ± 11.9	.104	23.3 ± 9.4	29.1 ± 8.1	.086	27.2 ± 13.9	24.2 ± 7.2	.399
Appetite (VAS score)	5.1 ± 2.6	5.3 ± 3.1	.607	5 ± 2.5	5.3 ± 2.5	.351	5.1 ± 2.0	6.1 ± 1.5	.00037
IL-6 (pg/ml)	43.8 ± 42.2	31.6 ± 27.9	.663	40.8 ± 22.9	29.6 ± 25.9	.0317	41.4 ± 39.9	24.7 ± 23.4	.0187
TNF-α (pg/ml)	32.2 ± 32.3	37.5 ± 40.7	.240	30.8 ± 22.9	33.8 ± 30.8	.649	37.3 ± 35.8	22.5 ± 21.8	.053
ROS (FORT U)	449 ± 128	458 ± 138	.736	462 ± 138	378 ± 154	.696	497 ±121	445 ± 115	.262
GPx (IU/ml)	6,441 ± 4,012	$7,107 \pm 3,398$.383	$7,046 \pm 3,448$	7,949 ± 3,669	.203	7,434 ± 3,125	6,676 ± 2,542	.816
EORTC QLQ-C30 (score)	55.2 ± 18.1	57.1 ± 21	.832	56.4 ± 19.3	60.3 ± 20	.188	56 ± 16.1	65.8 ± 18	.145
EQ-5D _{index} (score)	0.5 ± 0.3	0.4 ± 0.5	.151	0.5 ± 0.4	0.5 ± 0.38	.599	0.5 ± 0.3	0.6 ± 0.4	.092
EQ-5D _{VAS} (score)	45.3 ± 22.6	50 ± 26.8	.593	46.8 ± 21.7	48.8 ± 22.1	.712	51.7 ± 21.8	49.2 ± 18	.950
GPS	1.2 ± 0.76	0.9 ± 0.86	.030	1.3 ± 0.8	0.9 ± 0.8	.006	1.4 ± 0.7	0.9 ± 0.79	.008
ECOG PS score	1.88 ± 0.88	1.5 ± 0.9	.0001	1.7 ± 0.8	1.5 ± 0.8	<.0001	2 ± 0.6	1.5 ± 0.8	<.0001

The Oncologist 2010:15:200–21

NCCN Guidelines Recommendation

National NCCN Cancer Network®


NCCN Guidelines Version 1.2020 Comprehensive Palliative Care

NCCN Guidelines Index Table of Contents Discussion

PALLIATIVE CARE DRUG APPENDIX

Condition	Recommended Agents and Dosage by Estimated Life Expectancy and Symptom Etiology
Dyspnea (<u>PAL-11</u>)	Life Expectancy: Years; Year to Months; and Months to Weeks • General: Morphine, 2.5–10 mg PO q2h PRN or 1–3 mg IV q2h PRN for opioid naïve, increase dose by 25% for non-opioid naïve • For acute progressive dyspnea, or for patients who are not opioid naïve, more aggressive titration may be required • Anxiety: Lorazepam, 0.25–1 mg PO q4h PRN for benzodiazepine naïve
Dyspnea (<u>PAL-12</u>)	Life Expectancy: Weeks to Days (dying patient) • General: Morphine, 2.5–10 mg PO q2h PRN or 1–3 mg IV q2h PRN if opioid naïve, increase dose by 25% for non-opioid naïve • For acute progressive dyspnea, or for patients who are not opioid naïve, more aggressive titration may be required • Anxiety: Lorazepam, 0.25–1 mg PO q4h PRN if benzodiazepine naïve • Fluid overload: Furosemide
Secretions (PAL-12)	 Excessive secretions: Scopolamine, 0.4 mg SC q4h PRN/1.5 mg patches, 1–3 patches q72h OR atropine, 1% ophthalmic solution 1–2 drops SL q4h PRN OR glycopyrrolate, 0.2–0.4 mg IV or SC q4h PRN
Anorexia/ Cachexia (PAL-13)	Life Expectancy: Years; Year to Months • Depression/anorexia: Mirtazapine, 7.5–30 mg PO QHS • Gastroparesis (early satiety): Metoclopramide 5–10 mg PO QID 30 min before meals and at bedtime • Low/no appetite: Megestrol acetate, 400–800 mg/d PO OR olanzapine, 5 mg/d PO
Anorexia/ Cachexia (PAL-14)	Life Expectancy: Months to Weeks; Weeks to Days (dying patient) Low/no appetite: Megestrol acetate, 400–800 mg/d PO OR olanzapine, 5 mg/d PO OR dexamethasone, 4–8 mg/d PO OR consider cannabinoid Depression: Mirtazapine, 7.5–30 mg PO QHS

Exercise increase appetite

Take home message

- Cancer cachexia is a common syndrome in advance cancer patients
- Multiple factors, including change metabolism, decrease appetite and fat and muscle wasting
- Early intervention in precachexia status improve outcome
- Many pharmaceutical interventions including MA showed benefit in lean body mass increase, appetite increase and decrease anorexia.
- Enough dose and enough duration are important for MA supplement

THANK YOU FOR YOUR ATTENTION !!!